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ABSTRACT 

 

Approximate circuits have been considered for applications that can tolerate some loss of accuracy with 

improved performance and/or energy efficiency. Multipliers are key arithmetic circuits in many of these 

applications including digital signal processing (DSP). This multiplier leverages a newly designed approximate 

adder that limits its carry propagation to the nearest neighbours for fast partial product accumulation. Different 

levels of accuracy can be achieved by using either OR gates or the proposed approximate adder in a 

configurable error recovery circuit. The approximate multipliers using these two error reduction strategies are 

referred to as AM1 and AM2, respectively. Both AM1 and AM2 have a low mean error distance, i.e., most of the 

errors are not significant in magnitude. Compared with a Wallace multiplier optimized for speed, an 8×8 AM1 

using four most significant bits for error reduction shows a 60% reduction in delay (when optimized for delay) 

and a 42% reduction in power dissipation (when optimized for area). In a 16×16 design, half of the least 

significant partial products are truncated for AM1 and AM2, which are thus denoted as TAM1 and TAM2, 

respectively. Compared with the Wallace multiplier, TAM1 and TAM2 save from 50% to 66% in power, when 

optimized for area. Compared with existing approximate multipliers, AM1, AM2, TAM1, and TAM2 show 

significant advantages in accuracy with a low power-delay product. AM2 has a better accuracy compared with 

AM1 but with a longer delay and higher power consumption. Image processing applications, including image 

sharpening and smoothing, are considered to show the quality of the approximate multipliers in error-tolerant 

applications. By utilizing an appropriate error recovery scheme, the proposed approximate multipliers achieve 

similar processing accuracy as exact multipliers, but with significant improvements in power. 
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1.0 Introduction 

 

Approximate computing has emerged as a 

potential solution for the design of energy-efficient 

digital systems. Applications such as multimedia, 

recognition and data mining are inherently error-

tolerant and do not require a perfect accuracy in 

computation. 

For Digital Signal Processing (DSP) 

applications, the result is often left to interpretation 

by human perception. Therefore, strict exactness may 

not be required and an imprecise result may suffice 

due to the limitation of human perception. 

For these applications, approximate circuits 

play an important role as a promising alternative for 

reducing area, power and delay, thereby achieving 

better performance in energy efficiency. 

As one of the key components in arithmetic 

circuits, adders have been extensively studied for 

approximate implementation. As the typical 

carry propagation chain is usually shorter than the 

width of an adder, the speculative adders use a 

reduced number of less significant input bits to 

calculate the sum bits. An error detection and 

recovery scheme has been proposed to extend the 

scheme for a reliable adder with variable latency. A 

reliable variable-latency adder based on carry select 

addition has been presented. As a number of 

approximate adders have been proposed, new 

methodologies to model, analyze and evaluate them 

have been discussed. 

A multiplier usually consists of three stages: 

partial product generation, partial product 

accumulation and a Carry Propagation Adder (CPA) 
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at the final stage. In the Under Designed Multiplier 

(UDM), approximate partial products are computed 

using inaccurate 2 × 2 multiplier blocks, while 

accurate adders are used in an adder tree to 

accumulate the approximate partial products, 

approximate 4 × 4 and 8 × 8bit Wallace multipliers 

are designed by using a carry-in prediction method. 

Then, they are used in the design of approximate 16 × 

16 Wallace multipliers, referred to as AWTM. The 

AWTM is configured into four different modes by 

using a different number of approximate 4 × 4 and 8 

× 8 multipliers. The use of approximate speculative 

adders has been discussed in [10] for the final stage 

addition in a multiplier. The Error Tolerant Multiplier 

(ETM) is based on the partition of a multiplier into an 

accurate multiplication part for Most Significant Bits 

(MSBs) and a non-multiplication part for Least 

Significant Bits (LSBs). The Static 

Segment Multiplier (SSM) utilizes a similar 

partition scheme. In an n ×n SSM, an m ×m accurate 

multiplier (m-n/2) is used to multiply the m 

consecutive bits from the two input operands. 

Whether the (n-m) MSBs of each input operand are 

all zero determines the selection of the inputs for the 

accurate multiplier (m MSBs or m LSBs). These 

approximate multipliers are designed for unsigned 

operation. Signed multiplication is usually 

implemented by using a Booth algorithm. 

Approximate designs have been proposed for fixed 

width Booth multipliers. 

 

2.0 Literature Review 

 

Generally, a multiplier consists of stages of 

partial product generation, accumulation and final 

addition. The commonly used partial product 

accumulation structures include the Wallace, Dadda 

trees and a carry-save adder array. In a Wallace tree, 

log2 (n) layers are required for an n-bit multiplier. 

The adders in each layer operate in parallel without 

carry propagation, and the same operation repeats 

until two rows of partial products remain. Therefore, 

the delay of the partial product accumulation stage is 

O(log2 (n)). Moreover, the adders in a Wallace tree 

can be considered as a 3:2 compressor and can be 

replaced by other counters or compressors (e.g. a 4:2 

compressor) to further reduce the delay. The Dadda 

tree has a similar structure as the Wallace tree, but it 

uses as few adders as possible. For a carry-save adder 

array, the carry and sum signals generated by the 

adders in a row are connected to the adders in the 

next row. Adders in a column operate in series. 

Hence the partial product accumulation delay of an n-

bit multiplier is approximately O(n), longer than that 

of the Wallace tree. However, an array requires a 

smaller area and thus lowers power dissipation due to 

the simple and symmetric structure. 

 

3.0 Classification of Approximation Multiplier 

 

 Approximation in generating the partial products 

  Approximation (including truncation) in the 

partial product tree 

 Using approximate counters or compressors in 

partial product tree. 

 

3.1 Approximation in generating partial products 

The Under Designed Multiplier (UDM) 

utilizes an approximate 2 × 2 bit multiplier block 

obtained by altering a single entry in the Karnaugh 

Map (K-Map) of its function. In this approximation, 

the accurate result “1001” for the multiplication of 

“11” and “11” is simplified to “111” to save one 

output bit. Assuming the value of each input bit is 

equally likely, the error rate of the 2 × 2 bit multiplier 

block is ( 1 2 ) 4 = 1 16 . Larger multipliers can be 

designed based on the 2 × 2 bit multiplier. This 

multiplier introduces an error when generating partial 

products, however the adder tree remains accurate. 

 

3.2 Approximation in the partial product tree 

A bio-inspired imprecise multiplier referred to 

as a Broken Array Multiplier (BAM) is proposed. 

The BAM operates by omitting some carry-save 

adders in an array multiplier in both horizontal and 

vertical directions. TheError Tolerant Multiplier 

(ETM) is divided into a multiplication section for the 

MSBs and a non-multiplication section for the LSBs. 

A NOR gate based control block is used to deal with 

two cases: 

i) if the product of the MSBs is zero, then the 

multiplication section is activated to multiply the 

LSBs without any approximation 

ii) if the product of the MSBs is nonzero, the non-

multiplication section is used as an approximate 

multiplier to process the LSBs, while the 

multiplication section is activated to multiply the 

MSBs. 

The Static Segment Multiplier (SSM) was 

further proposed using a similar partition scheme. 

Different from ETM, no approximation is applied to 

the LSBs in the SSM. Either the MSBs or the LSBs 
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of each of the operands are accurately multiplied 

depending on whether its MSBs are all zeros. Shown 

that a small improvement in accuracy and hardware 

cost is achieved compared to the ETM, thus this 

design is not considered further in the comparison 

study. A power and area-efficient Approximate 

Wallace tree multiplier (AWTM) is based on a bit-

width aware approximate multiplication and a carry-

in prediction method. An n bit AWTM is 

implemented by four n/2-bit sub-multipliers, and the 

most significant n/2-bit sub-multiplier is further 

implemented by four n/4-bit sub-multipliers. The 

AWTM is configured into four different modes by the 

number of approximate n/4-bit sub-multipliers in the 

most significant n/2-bit sub-multiplier. The 

approximate partial products are then accumulated by 

a Wallace tree. 

 

3.3 Using approximate counters or compressors in 

the partial product tree 

In the Inaccurate Counter based Multiplier 

(ICM), an approximate (4:2) counter is proposed for 

an inaccurate 4-bit Wallace multiplier. The carry 

andsum of the counter are approximated as “10” (for 

“100”) when all input signals are „1‟. As the 

probability of obtaining a partial product of „1‟ is 1 4, 

the error rate of the approximate (4:2) counter is (1 4) 

4 = 1 256. The inaccurate 4-bit multiplier is then used 

to construct larger multipliers with error detection 

and correction circuits. In the compressor based 

multiplier, accurate (3:2) and (4:2) compressors are 

improved to speed up the partial product 

accumulation stage. By using the improved 

compressors, better energy and delay characteristics 

are obtained for a multiplier. To further reduce delay 

and power, two approximate (4:2) compressor 

designs (AC1 and AC2); these compressors are used 

in a Dadda multiplier with four different schemes. 

Approximate counters in which the more significant 

output bits are ignored are presented and evaluated; 

several signed multipliers are also implemented using 

these approximate counters. As only unsigned 

multipliers are discussed in this paper, the more 

accurate schemes 3 and 4 of the approximate 

compressor based multiplier (referred to as ACM-3 

and ACM-4) in are considered in the comparison. In 

the approximate multiplier with configurable error 

recovery, the partial products are accumulated by a 

novel approximate adder. 

The approximate adder utilizes two adjacent 

inputs to generate a sum and an error bit. The adder 

processes data in parallel, thus no carry propagation 

is required. Two approximate error accumulation 

schemes are then proposed to alleviate the error of the 

approximate multiplier (due to the approximate 

adder). OR gates are used in the first error 

accumulation stage in scheme 1 (AM1), while in 

scheme 2 (AM2), both OR gates and approximate 

adders are used. The truncation of 16 LSBs in the 

partial products in AM1 and AM2 results in TAM1 

and TAM2 respectively. 

 

3.4 Proposed approximate multiplier 

A distinguishing feature of the proposed 

approximate multiplier is the simplicity to use 

approximate adders in the partial product 

accumulation. It has been shown that this may lead to 

low accuracy, because errors may accumulate and it 

is difficult to correct errors using existing 

approximate adders. However, the use of the newly 

proposed approximate adder overcomes this problem 

by utilizing the error signal. The resulting design has 

a critical path delay that is shorter than a conventional 

one-bit full adder, because the new n-bit adder can 

process data in parallel. The approximate adder has a 

rather high error rate, but the feature of generating 

both the sum and error signals at the same time 

reduces errors in the final product. An adder tree is 

utilized for partial product accumulation; the error 

signals in the tree are then used to compensate the 

error in the output to generate a product with a better 

accuracy. 

The architecture of the proposed approximate 

multiplier is shown in figure 1. In the proposed 

design, the simplification of the partial product 

accumulation stage is accomplished by using an 

adder tree, in which the number of partial products is 

reduced by a factor of 2 at each stage of the tree. This 

adder tree is usually not implemented using accurate 

multi-bit adders due to the long latency. However, the 

proposed approximate adder is suitable for 

implementing an adder tree, because it is less 

complex than a conventional adder and has a much 

shorter critical path delay. 

Exact fast multipliers often include a Wallace 

or Dadda tree using full adders (FAs) and half adders 

(HAs); compressors are also utilized in the Wallace 

or Dadda tree to further reduce the critical path with 

an increase in circuit area. These designs require a 

proper selection of different circuit modules; for 

example, 4:2 compressors, FAs and HAs are 

commonly used in a Wallace tree and a judicious 
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connection of these modules must be considered in a 

tree design. This increases the design complexity, 

especially when multipliers of different sizes are 

considered; the proposed design is simple for various 

multiplier sizes. 

 

Fig  1: An Approximate Multiplier with Partial 

Error Recovery 

 

 
 

3.5 Error accumulation for approximate 

multiplier 1 

As shown in Fig. 1, each approximate adder Ai 

generates a sum vector Si and an error vector Ei, 

where i = 1, 2,…. 7. If the error signals are added 

using accurate adders, the accumulated error can fully 

compensate the inaccurate product; however to 

reduce complexity, an approximate error 

accumulation is introduced. Consider the observation 

that the error vector of each approximate adder tends 

to have more 0‟s than 1‟s. Therefore, the probability 

that the error vectors have an error bit „1‟at the same 

position, is quite small. Hence, an OR gate is used to 

approximately compute the sum of the errors for a 

single bit. If m error vectors (denoted by E1, E2, 

...,Em) have to be accumulated, then the sum of these 

vectors is obtained as 

Ei = E1i OR E2i OR ... OR Emi . 

To reduce errors, an accumulated error vector 

is added to the adder tree output using a conventional 

CPA (e.g. a carry lookahead adder). However, only 

several (e.g. k) MSBs of the error signals are used to 

compensate the outputs to further reduce the overall 

complexity. The number of MSBs is selected 

according to the extent that errors must be 

compensated. Forexample in an 8 × 8 adder tree, 

there are a total of 7 error vectors, generated by the 7 

approximate adders in the tree. However, not all the 

bits in the 7 vectors need to be added, because the 

MSBs of some vectors are less significant than the 

least significant bits of the k MSBs. In the example of 

Fig. 1, 5 MSBs (i.e. the (11 − 14)th bits, no error is 

generated at the 15th bit position) are considered for 

error recovery and therefore, 4 error vectors are 

considered (i.e., the error vectors E3, E4, E6 and E7). 

The error vectors of the other three adders are less 

significant than the 11th bit, so they are not 

considered. The accumulated error E is obtained 

using (8); then, the final result is found by adding E 

to S using a fast accurate CPA. The error 

accumulation scheme is shown in figure 2. As no 

error is generated at the least significant two bits of 

each approximate adder Ai (i = 1, 2…. 7), the least 

significant two bits of each error vector Ei are not 

accumulated. 

 

Fig  2: Error Accumulation Tree for AM1 

 

 
 

Fig 3: Approximate Multiplier Output 
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Fig 4: Proposed Approximate Multiplier Output 

 

 

 

5.0 Results 

 

Simulation results are shown by figure 3 and 

figure 4 respectively. 

 

6.0 Conclusions 

 

Approximate computing has recently emerged 

as a promising approach to energy-efficient design of 

digital systems. Approximate computing relies on the 

ability of many systems and applications to tolerate 

some loss of quality or optimality in the computed 

result. By relaxing the need for fully precise or 

completely deterministic operations, approximate 

computing techniques allow substantially improved 

energy efficiency. 
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